
Towards a Harmonised EPB Methodology Across Belgium

Position Paper – Update of 22 January 2026

Prepared by

Together with

Embuild

THE BELGIAN CONSTRUCTION
ASSOCIATION

UPSI | **BVS**
ASBL-UP | VZW-BV

TOWARDS A HARMONISED EPB METHODOLOGY ACROSS BELGIUM

CONTENT

Towards a Harmonised EPB Methodology across Belgium	2
Introduction	3
Stakeholders	4
Summary table	6
Visual summary	7
Illustrative case study	9
Phase 1 - Quick wins	10
1. Electricity conversion factor	10
2. Climatic assumptions	11
Phase 2 - Structural improvements	13
3. Renewable energy accounting	13
4. Default system efficiencies and reference values	13
5. Treatment of building use profiles and schedules	14
6. Treatment of ventilation and airtightness testing assumptions	14
7. Calculation and display of the EPB indicator	15
8. Harmonisation of building boundary & surface areas definitions	16
Phase 3 - Harmonisation	18
9. Full harmonisation of the EPB methodology	18
10. Single shared calculation engine	19
11. Harmonised training and accreditation	20
12. Shared EPB Database	21
13. Data interoperability and integration with building passports	21
Conclusion	23
Contact	24

INTRODUCTION

For more than a decade, the construction, real estate and engineering sectors have repeatedly called for the harmonisation of EPB methodologies across Belgium's three Regions. Over the years, this request has grown into a **unified appeal from organisations of the whole value chain** representing more than **16,500 Belgian companies**. Today, the financial sector has joined this call, underscoring the urgency of moving beyond administrative and regional fragmentation to **support Belgium's climate objectives**.

Previously, a common EPB methodology existed for new buildings across the three Regions, demonstrating that alignment was both technically and administratively feasible. Its subsequent replacement by diverging regional approaches has since generated unnecessary complexity, avoidable costs and inconsistent results. These differences can no longer be justified. Belgium already has concrete examples of successful interregional cooperation: the TOTEM methodology for embodied carbon assessment is jointly developed and governed by the three Regions, and the GRO framework follows the same collaborative logic. European countries with far greater regional diversity, such as France and Germany, also operate successfully with a single national method. Together, these examples show that harmonisation is not only desirable, but practically achievable.

The current implementation of the new **EPBD recast** creates a unique window of opportunity. The revised directive explicitly calls for greater consistency and comparability in the assessment of building energy performance, making harmonisation between Regions not only desirable but necessary at **risk of legal non-compliance**. While the legal texts are in the process of being finalised, there is still room for coordination and alignment between the three Regions at the level of methodology and implementation. This can be achieved through cooperation between administrations and their existing technical partners, without the need to launch new public procurement procedures. Our requests focus precisely on this pragmatic coordination effort, allowing the Regions to align efficiently while EPBD implementation work is already underway.

Harmonisation would bring **substantial economic and administrative efficiencies**. Operating three separate systems triples public expenditure on software development, maintenance, legal interpretation, updates and training. A unified approach would allow the Regions to pool resources, simplify governance and deliver clearer rules for the entire market.

Beyond administrative benefits, harmonisation directly benefits consumers by providing clearer, more consistent and comparable EPB information across Regions. This improved transparency **helps citizens better understand their obligations** and make informed decisions about energy renovations, regardless of where their property is located.

Harmonisation is also essential for the financial sector, whose role is critical under the European Green Deal. Banks need consistent, comparable EPB data across Belgium to assess performance, comply with sustainable finance rules (e.g. EU Taxonomy¹, CRD/CRR²) and redirect capital toward sustainable buildings and renovation projects. Fragmentation makes this unnecessarily difficult and **slows down investment in renovation and low-carbon construction**.

This joint initiative outlines a series of quick wins that can be implemented immediately at no cost, as well as the structural steps required to harmonise key parameters, calculation methods and the back-

¹ EU Taxonomy is a classification system defining which economic activities are environmentally sustainable, providing a common reference to support transparency, comparability, and the credibility of sustainable finance.

² CRD / CRR (Capital Requirements Directive & Capital Requirements Regulation): EU prudential rules that govern banks' capital, governance, and risk management, requiring climate and ESG risks to be treated as financial risks to ensure the stability of the banking system.

end calculation engine. While these core elements should be aligned nationally to ensure consistency and efficiency, **front-end tools and user interfaces may of course remain adapted to regional specificities**, communication practices and administrative processes.

All sectors are now united behind this common request. We have organised our recommendations by ease of implementation. We now ask the three regional ministers responsible for energy performance to provide a joint response, clarifying which measures they are prepared to implement and within what timeframe.

We stand ready to support the administrations and policymakers throughout this process and to assist them in implementing these measures efficiently and constructively.

Stakeholders

This initiative has been coordinated by the Belgian Green Building Council (BGBC) and builds on the EPBD implementation guidance developed by the World Green Building Council (WorldGBC), as well as on **best practices shared by other Green Building Councils across the European countries** concerned by the EPBD recast.

This work builds on a continuous effort, as the **CFDD-FRDO** has already highlighted this need on several occasions³.

The position paper was developed through a collaborative process involving key sector organisations ensuring representation across the construction, real estate and financial value chains, namely:

- **ADEB-VBA**: Association representing major Belgian construction companies engaged in large-scale and complex projects.
- **BELFA**: Belgian Facility Association, representing facility management professionals responsible for the operation and performance of buildings.
- **Buildwise**: Belgian innovation centre for the construction sector, supporting research, technical guidance and sector-wide harmonisation initiatives.
- **Embuild**: Representative organisation of the Belgian construction sector, covering contractors across all regions and market segments.
- **FEBELFIN**: Federation of the Belgian financial sector, representing banks and financial institutions supporting sustainable investment and transition.
- **Techlink**: Belgian federation representing companies active in technical installations and services, covering areas such as HVAC, electrical systems, energy technologies and smart building solutions.
- **UPSI-BVS**: Federation representing professional real estate developers and investors active across Belgium.

This work was further coordinated with cross-sector which have also been actively advocating for greater harmonisation, reinforcing the broad alignment behind this initiative, namely:

- **BA4SC** (Belgian Alliance for Sustainable Construction): a multi-stakeholder alliance bringing together public and private actors to accelerate the transition toward a more sustainable construction sector in Belgium.

³ <https://frdo-cfdd.be/fr/avis/03-un-message-du-cfdd-a-lattention-du-nouveau-gouvernement-federal/>
<https://frdo-cfdd.be/fr/avis/10-avis-transition-juste-ressources-et-energie/>
<https://frdo-cfdd.be/fr/avis/03-avis-sur-la-revision-du-plan-national-energie-climat-2030-pnec/>

- **Life Be Free:** a European LIFE-funded project supporting the decarbonisation of buildings.

Together, they represent more than **16,500 Belgian companies**.

To ground the work in practical experience, a **consultation survey** was sent to all members of the participating organisations in November 2025. Members were given a month to respond. The survey aimed to identify concrete difficulties caused by diverging EPB methodologies and to collect practical proposals and recommendations for harmonisation.

The results of this consultation were consolidated into the present document by designated representatives of each organisation, who contributed on behalf of their respective members to make a joined proposition.

In parallel, the **three regional administrations were informed** of the initiative at an early stage and were given the opportunity to provide initial feedback. Their comments have been taken into account and integrated where relevant, reinforcing the constructive and transparent nature of the process.

This inclusive approach ensures that the recommendations presented in this paper are technically grounded, broadly supported by the market, and aligned with public policy considerations, while remaining focused on pragmatic and implementable solutions.

Summary table

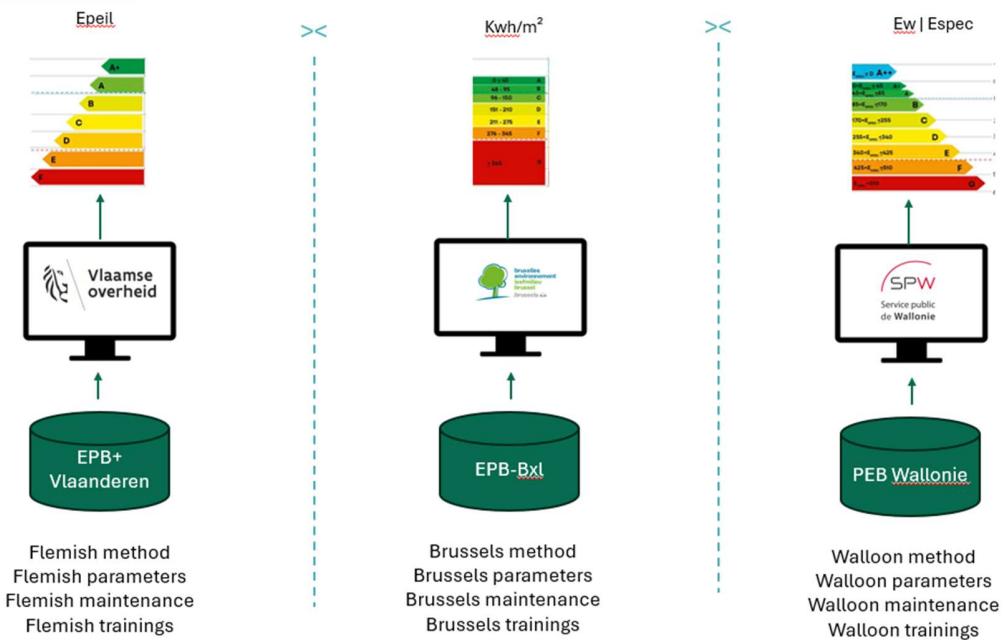
Topics		Technical Costs or Benefits	Implementation Complexity	Consensus
Phase 1 - QUICK WINS				
1	Electricity conversion factor	Neutral	Low	Broad agreement
2	Climatic assumptions	Neutral	Low	Broad agreement
Phase 2 - STRUCTURAL IMPROVEMENTS				
3	Renewable energy accounting	Limited costs	Low	Broad agreement
4	Default system efficiencies and reference values	Benefits	Medium	Broad agreement
5	Treatment of building use profiles and schedules	Limited costs	Medium	Broad agreement
6	Treatment of ventilation and airtightness testing assumptions	Limited costs	Medium	Broad agreement
7	Calculation and Display of the EPB Indicator	Limited costs	Medium	Broad agreement
8	Harmonisation of building boundary & surface areas definitions	Limited costs	Medium	Broad agreement
Phase 3 - HARMONISATION				
9	Full harmonisation of the EPB methodology	Costs & benefits	High	General agreement with reservations
10	Single shared calculation engine	Costs & benefits	High	General agreement with reservations
11	Harmonised training and accreditation	Costs & benefits	Medium	General agreement with reservations
12	Shared EPB Database	Costs & benefits	High	General agreement with reservations
13	Data interoperability and integration with building passports	Costs & benefits	Medium	General agreement with reservations

Timing

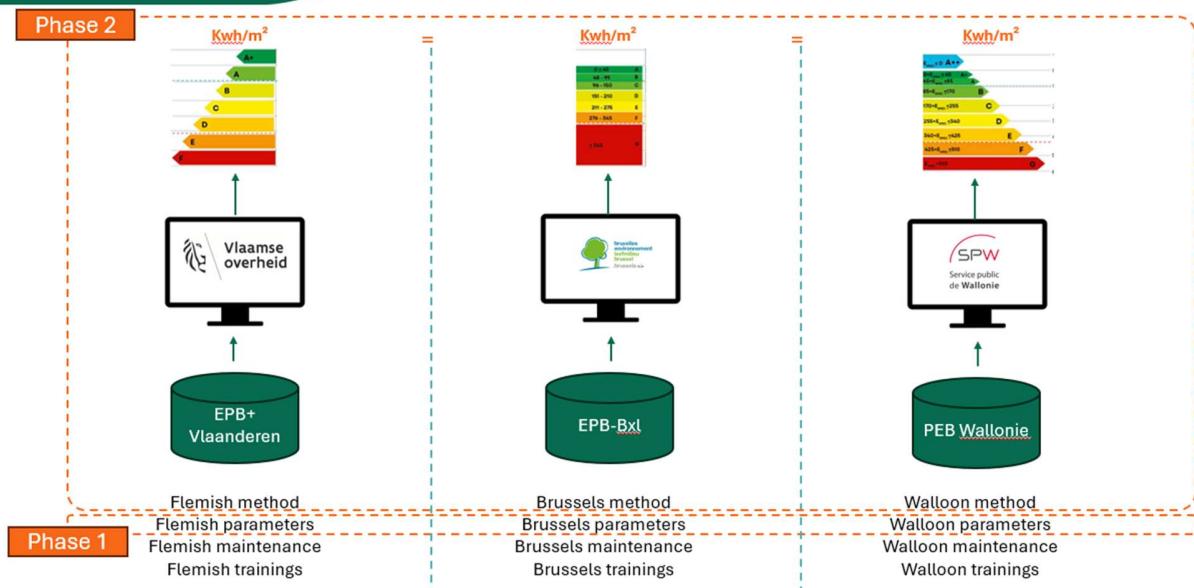
Phase 1

The identified quick wins can already be implemented by date of implementation of the EPBD in May 2026, as they require no coordination effort between Regions and rely solely on decisions that can be taken immediately.

Phase 2


The structural improvements can be implemented within the existing methodologies and calculation engines, with limited technical costs, and achieved by the end of 2026.

Phase 3


The remaining measures—both methodological and related to the calculation engine—should be implemented within 2 years, given that all the necessary components already exist in at least one Region. Nothing needs to be invented; the solutions are already operational somewhere in Belgium.

Visual summary


CURRENT

TRANSITION

VISION

Illustrative case study

Consider a typical renovated dwelling requiring 100 kWh/m²·year for space heating. This level of performance is relatively common in Brussels for existing buildings that have been renovated to a reasonable standard, though not to the level of new construction or deep renovation.

If a forward-looking choice is made to decarbonise heating by switching to electricity (direct electric heating or a heat pump), the resulting EPB score varies dramatically depending on the Region. For identical real energy consumption, the same dwelling would be rated at approximately 190 kWh/m²·year in one Region and 250 kWh/m²·year in another — a difference of more than 30%, purely driven by methodological parameters rather than physical reality.

Under the same climatic conditions and assuming identical system efficiencies, the comparison becomes striking:

- a gas-heated dwelling retains an EPB value close to 100 kWh/m²·year;
- the electrified version of the same dwelling is penalised and classified very differently across Regions.

When EPB labels are taken into account, the gas-heated dwelling would typically fall into category B or C, with no immediate renovation obligation as long as gas boilers remain permitted. By contrast, the electrified dwelling could be rated B in one Region but D or even E in another. As a result, the same decarbonised renovation would be encouraged, financeable and compliant in one Region, while being discouraged or even penalised in another.

This inconsistency has major consequences for long-term financing. In Brussels, where only dwellings with an EPB value of 150 kWh/m²·year (label C) will be allowed from 2043, a bank considering a 20–30 year mortgage as early as 2026 faces a real risk: a property that is compliant today may become non-compliant or subject to penalties before the loan matures. This makes it extremely difficult to justify financing decarbonised renovations, even though the initial decision — purchasing a gas-heated dwelling with an EPB of 100 — appeared entirely reasonable at the time. Yet gas boiler replacements will be banned in Brussels around 2030–2035, leaving electricity as the only viable option for a large share of households.

The situation is even more critical for ground-floor apartments, penthouses or dwellings with exposed façades, where heat losses are higher and reaching 100 kWh/m²·year is more challenging. In these cases, households may face penalties as early as 2033 if they switch to electric heating to comply with fossil fuel phase-out policies.

Trust in energy transition policies depends on the existence of a coherent, intelligible and fair framework. Citizens and banks must be able to understand which renovation and heating choices are encouraged and why. When additional regional differences in climatic assumptions and system efficiencies are added to the equation, the result is a system that is neither predictable nor socially fair. It risks favouring only recent buildings, new developments, dwellings with large roofs for PV panels or access to district heating, leaving many households behind.

This case clearly illustrates why harmonisation of EPB methodologies is essential to enable effective renovation, fair financing decisions and a just transition toward fossil-free heating across Belgium.

PHASE 1 - QUICK WINS

This section presents a set of quick wins: proposed adjustments to the EPB methodology that already enjoy broad **consensus** among stakeholders, require **no additional cost** for public authorities or market actors, and are **straightforward to implement** within the existing regulatory frameworks. These measures offer an immediate opportunity to improve coherence, transparency and usability across the three Regions, while laying the groundwork for deeper harmonisation in the future.

1. Electricity conversion factor

Stakeholders

Developers, Energy Experts, Financial Institutions

Rationale

The three Regions currently apply different primary energy conversion factors for electricity — ranging from 2.0 to 2.5 depending on the reference year and assumed grid mix. This discrepancy leads to different EPB results for identical buildings, depending on where they are located. For example, a new office building with the same systems and insulation levels may achieve an E-level of 45 in Flanders but E70 in Wallonia, purely due to this methodological difference.

Recommendation

Adopt a single national electricity **conversion factor set at 1.9 and CO2 conversion factor at 0,131 kgCO2e/kWh**.

The proposed electricity conversion factor of 1.9 is fully aligned with European and national references. It corresponds to the proposed default value in Annex IV of Directive 2012/27/EU⁴ and reflects the current Belgian electricity mix, composed of approximately 20% gas, 47% nuclear and 33% renewable energy. As the share of renewables continues to increase and gas further declines, this factor is expected to decrease over time, reinforcing the relevance of this choice.

Regarding the CO₂ conversion factor, the commonly used value of 0.231 kgCO₂/kWh is almost twice as high as the actual average carbon intensity of Belgian electricity over the past four years, and even higher than the emission factor for natural gas (\approx 202 g CO₂/kWh). Such an overestimated value penalises electricity compared to gas and leads to a structural overestimation of Belgium's real CO₂ emissions, particularly for buildings using heat pumps.

⁴ Applicable when energy savings are calculated in primary energy terms using a bottom-up approach based on final energy consumption. For savings in kWh electricity, Member States shall apply a coefficient established through a transparent methodology on the basis of national circumstances affecting primary energy consumption, in order to ensure a precise calculation of real savings. Those circumstances shall be substantiated, verifiable and based on objective and non-discriminatory criteria. For savings in kWh electricity, Member States may apply a **default coefficient of 1,9** or use the discretion to define a different coefficient, provided that they can justify it. When doing so, Member States shall take into account the energy mix included in their integrated national energy and climate plans to be notified to the Commission in accordance with Regulation (EU) 2018/1999. By 25 December 2022 and every four years thereafter, the Commission shall revise the default coefficient on the basis of observed data. That revision shall be carried out taking into account its effects on other Union law such as Directive 2009/125/EC and Regulation (EU) 2017/1369 of the European Parliament and of the Council of 4 July 2017 setting a framework for energy labelling and repealing Directive 2010/30/EU (OJ L 198, 28.7.2017, p. 1).

We therefore recommend using 0.131 kgCO₂e/kWh, corresponding to the maximum observed value over the last four years, as a conservative yet realistic reference. Recent data clearly illustrate the downward trend in electricity carbon intensity, driven by increasing renewable penetration and declining gas use:

2024: 110 g CO₂e/kWh – 34% renewable – 65.4 TWh

2023: 107 g CO₂e/kWh – 34% renewable – 68.9 TWh

2022: **131** g CO₂e/kWh – 25% renewable – 80.1 TWh

2021: 127 g CO₂e/kWh – 21% renewable – 84.6 TWh

Forecasts for the Belgian energy mix indicate a continued reduction in the share of gas, which will further lower the CO₂ intensity of electricity. Adopting an unrealistically high CO₂ factor would therefore contradict actual system performance, distort policy signals, and undermine electrification strategies that are fully aligned with Belgian and European climate objectives.

Impact

Aligning all Regions on a single electricity conversion factor would have a direct and measurable impact on Belgium's overall **theoretical carbon footprint**. By lowering primary energy scores across the board, it would more accurately reflect the progressive decarbonisation of the Belgian electricity mix and immediately improve the comparability of EPB results nationally.

At the same time, this measure would incentivize a **shift toward electric**, fossil-free heating solutions, fully consistent with current regional and federal policies promoting heat pumps and phasing out fossil boilers. Harmonising this parameter therefore supports both fair performance assessment and the national trajectory toward full electrification and climate neutrality.

2. Climatic assumptions

Stakeholders

Designers, Engineers, Academic Experts

Rationale

Each Region uses different reference years in the climatic datasets for the simulation of building energy needs. As a result, two buildings designed to the same specifications can yield different heating and cooling demands simply because the reference weather differs.

These differences are technically unjustified for national energy targets and create confusion in comparative studies, national statistics, and certification.

Recommendation

Develop a harmonised and the most recent climatic dataset . This dataset should be adapted at least every five years.

This could be developed collaboratively by the three energy administrations with support from KMI/IRM and academic institutions, ensuring technical robustness. A common dataset would enable cross-regional benchmarking and simplify the validation of dynamic simulation tools.

Impact

A single national climatic dataset would make EPB results more **reliable and comparable** by removing artificial differences caused by regional weather files. It would also improve **national energy and carbon statistics** and ensure that performance levels reflect real design choices.

PHASE 2 - STRUCTURAL IMPROVEMENTS

While our ultimate objective is to achieve a fully harmonised EPB methodology across the three Regions — as detailed in the following section — this transition will require several intermediate steps. This chapter outlines a series of structural improvements that are cost-neutral but more complex to implement than the quick wins. These measures form the essential groundwork for enabling a smooth and effective move toward full harmonisation of the EPB calculation methods.

3. Renewable energy accounting

Stakeholders

Developers, Contractors, Banks

Rationale

The accounting of renewable energy (especially for photovoltaic self-consumption, exported energy, and storage) differs between Regions. Brussels has adopted a different way of account: self-consumed PV electricity is fully deducted from primary energy use. This leads to inconsistent business cases for renewable investment, depending on project location.

Recommendation

Define a unified national methodology for renewable energy contribution in EPB calculations.

This should specify:

- How self-consumed vs. exported electricity is credited;
- How battery storage is accounted for;
- How to integrate district heating or renewable energy communities.

Impact

Aligning these elements would ensure a level playing field and make green financing criteria more predictable. Current discrepancies create uncertainty for developers and lenders and slow down investment in heat pumps, solar PV and hybrid systems. Harmonisation would provide clearer signals and accelerate the adoption of renewable and electrified solutions.

While the measure is not technically complex, it will require coordination between the three administrations to adopt the same calculation approach (e.g., annual vs. monthly deductions) and will involve updates to regional legal texts.

4. Default system efficiencies and reference values

Stakeholders

Engineers, Building Assessors

Rationale

Each Region maintains its own library of default values for boilers, ventilation, and renewable systems. For instance, a standard gas boiler may have a default seasonal efficiency of 92% in one Region and 94% in another, which can affect the final energy score by several kWh/m².

This situation penalises cross-border actors and complicates national training, software development, and compliance verification.

Recommendation

Establish a shared and regularly updated database, co-managed by the regional administrations.

This database should include both default values and manufacturer-certified values. It could be integrated into a national digital platform used by accredited EPB assessors, ensuring transparency and traceability.

Impact

This measure would deliver an immediate improvement in the consistency and accuracy of EPB results across Belgium. It is a short-term, low-effort step that lays the essential groundwork for full EPB harmonisation

5. Treatment of building use profiles and schedules

Stakeholders

Designers, Certification Experts

Rationale

The three regional methodologies assume different use profiles (e.g. occupancy, types of rooms, spaces) for the different building types – such as residential, office, retail, education, health care, and logistics.

These inconsistencies make it impossible to compare performance levels or to use EPB data for national policy evaluation (e.g., NZEB statistics).

Recommendation

Harmonise default use profiles (occupancy, lighting, internal gains) for the main building categories.

This harmonisation should be developed in line with European standards (EN ISO 52000 family) to ensure future-proofing and interoperability with Life Cycle Assessment (LCA).

Impact

This measure would deliver an immediate improvement in the consistency and accuracy of EPB results across Belgium. It is a short-term, low-effort step that lays the essential groundwork for full EPB harmonisation

6. Treatment of ventilation and airtightness testing assumptions

Stakeholders

Engineers, Contractors, Energy Experts

Rationale

For airtightness, the three Regions currently apply the same default value of $v50 = 12 \text{ m}^3/\text{h}\cdot\text{m}^2$ for both residential and non-residential buildings, and the measurement methodology itself is based on the same

standard (EN ISO 9972). However, the reference documents and implementation rules differ between Regions, leading to divergent interpretations and practical application. In addition, only Flanders has an operational quality scheme with systematic third-party verification of airtightness measurements, while the other two Regions currently lack comparable independent control mechanisms. This creates differences in data reliability and confidence in measured values.

For ventilation, the situation is similar but more nuanced.

- For residential buildings, the required ventilation flow rates are broadly aligned across the three Regions.
- For non-residential buildings, however, differences exist in the tables defining minimum occupancy assumptions, which directly influence required airflow rates and calculated energy demand.

Moreover, Flanders has implemented a quality framework for the commissioning and verification of ventilation systems, whereas such a framework is not yet in place in the other Regions.

Referring solely to generic European standards such as EN 16798 does not fully resolve these discrepancies, as these standards define principles but do not prescribe specific flow rates or occupancy assumptions.

Recommendation

Move toward a progressive and structured harmonisation of ventilation and airtightness practices by:

- Implementing the future European standard for residential ventilation consistently across the three Regions once adopted;
- Aligning non-residential ventilation flow rates and occupancy assumptions at national level;
- Establishing a harmonised quality framework for ventilation system measurement and commissioning in all three Regions;
- Extending a common quality scheme for airtightness testing, including third-party verification, to all Regions.

These steps would build on existing practices, particularly those already operational in Flanders, and avoid reinventing methodologies.

Impact

This measure would deliver an immediate improvement in the consistency and accuracy of EPB results across Belgium. It is a short-term, low-effort step that lays the essential groundwork for full EPB harmonisation

7. Calculation and display of the EPB indicator

Stakeholders

Developers, Financial Institutions, Property Valuers

Rationale

Each Region presents its EPB results differently:

- Flanders uses E-level (relative performance index),
- Brussels uses primary energy per m^2 , and
- Wallonia combines both.

As a result, a “good” score in one Region can correspond to a “medium” score in another — confusing for citizens, investors, and even public bodies.

Recommendation

1. Use the unique measure of **kWh/m².year** for all regions, as it's the European Standard for sustainable finances
2. Align the values for the **label A**, as it's referred to in Sustainable Finance regulations (like the EU Taxonomy)

Impact

Using a single EPB indicator expressed in kWh/m².year would significantly improve clarity and comparability of building energy performance across Belgium and align national practice with European standards.

For banks and investors, a unified indicator would remove ambiguity, improve risk assessments, and enable smoother implementation of sustainable finance requirements such as the EU Taxonomy and future EU regulations. Ultimately, this clarity would **accelerate the flow of green capital** toward high-performance buildings and support Belgium's broader decarbonisation objectives.

8. Harmonisation of building boundary & surface areas definitions

Stakeholders

Designers, Engineers, Developers

Rationale

Differences exist between Regions in the definition of the calculation boundary for EPB assessments — for instance, whether energy exchanges between neighbouring buildings, common areas, or renewable energy communities are included. These inconsistencies affect the evaluation of collective systems and mixed-use developments. Additionally, the surface areas used in EPB calculations are not defined or measured in the same way across Regions, despite assessing the same building types. Nothing justifies these discrepancies, which introduce avoidable complexity and distort performance comparisons.

Recommendation

Adopt a **shared interpretation and calculation of**

- **EPB surfaces**;
- **boundary** (building vs. site);
- energy flows between connected buildings.

The definition should be compatible with **EPBD and ISO 52000** standards.

Impact

Harmonising building boundary definitions would ensure that collective systems—such as shared PV, energy communities, and district heating—are assessed consistently across Belgium. This clarity is

essential for banks and investors, who need predictable and comparable rules to evaluate the performance and bankability of multi-building or mixed-use projects. A unified boundary definition aligned with EPBD and ISO 52000 standards would also bring Belgium closer to European best practices, enabling smoother integration with EU reporting frameworks and accelerating investment in shared, low-carbon energy infrastructures.

PHASE 3 - HARMONISATION

Our Belgian inconsistency distorts investment and policy signals. Developers face uncertainty when comparing projects across Regions, and financial institutions struggle to define uniform sustainability thresholds (e.g., for green loans or taxonomy alignment). For many real estate investors—often international funds—the existence of divergent methodologies within such a small country is difficult to understand and undermines confidence. This fragmentation is detrimental to Belgium's positioning and image as a stable, transparent and attractive destination for real estate investment.

A unified national EPB methodology, applicable to all building types, combined with a shared calculation engine open to private software integration, represents the most efficient path toward a coherent, modern, and economically rational EPB system.

This reform alone would dramatically

- reduce administrative costs,
- simplify compliance for the market,
- support digital innovation,
- Increase collaboration efficiency
- facilitate European climate policies implementation,
- facilitate the financing of renovation by private institutions.

9. Full harmonisation of the EPB methodology

Stakeholders

All stakeholders (Developers, EPB assessors, designers, engineers, contractors, real estate owners, financial institutions)

Rationale

Today, the three Regions apply three different EPB methodologies, each with its own assumptions, calculation rules, definitions, and input parameters. This fragmentation generates inconsistent results for identical buildings, increases administrative burden, complicates training, and weakens Belgium's capacity to report consistently on European directives.

The Brussels methodology already demonstrates that a single unified method is technically feasible for all building types — residential, non-residential, new and existing buildings. Nothing justifies maintaining separate regional methods for identical building physics.

Adopting one national methodology would mean a break in continuity with historic data, but the sector welcomes this change although it will be disruptive.

Recommendation

Belgium should adopt one national EPB methodology, fully harmonised across regions, aligned with European methods and across all building types (new/existing, residential/tertiary).

Impact

A unified methodology would **multiply efficiencies, hence administrative costs**: shared updates, shared legal interpretation, shared scientific research, and a reduction by a factor of three in public expenditure on development and monitoring. It would provide the market with clarity, ensure consistent application of EU climate legislation, and significantly strengthen Belgium's credibility as a pragmatic, business-friendly country.

10. Single shared calculation engine

Stakeholders

All stakeholders (Developers, EPB assessors, designers, engineers, contractors, real estate owners, financial institutions)

Rationale

Historically, a shared EPB software platform was developed, and jointly managed by the Regions. Due to a lack of common governance, it has progressively diverged through region-specific modules.

Today, each Region maintains its own closed EPB software (EPB+ Vlaanderen, PEB Wallonie, EPB-Bxl), resulting in three parallel development tracks, three maintenance budgets and three incompatible digital ecosystems.

This fragmentation also discourages private-sector software providers—common in many EU countries—from entering the Belgian market, as no single solution can reach sufficient scale or justify the cost of integrating three different systems.

Recommendation

A common methodology is a necessary prerequisite for a unified or interoperable software ecosystem.

Belgium should move toward:

1. A shared national calculation engine, recognised jointly by the three Regions.
2. Open API specifications, enabling other systems to interact directly with the calculation engine. We think more particularly about
 - TOTEM tool (software for whole life cycle assessment, jointly developed by the three regions)
3. complementary professional softwares (e.g. BIM tools, simulation tools, design platforms, Life-cycle Assessment tools)Accreditation of private-sector EPB software, similar to other EU markets, where multiple software providers coexist and are recognised by public authorities.

Regions would only need to maintain their own output formats (front-ends and users interfaces) and labels (regional certificates), but all calculations would be based on a **single shared engine**.

Impact

A single national calculation engine, open to private-sector software via APIs, would modernise the EPB ecosystem and greatly improve efficiency. Professionals could use tools tailored to their workflow—

whether architects, engineers, contractors or assessors—reducing errors, duplication and administrative time, while private developers would deliver faster updates and superior user experience.

For administrations, joint recognition of software and shared maintenance would **drastically cut costs** compared to the current triple system.

Overall, harmonised calculation engine would create a more coherent, innovative and cost-effective framework for all stakeholders.

11. Harmonised training and accreditation

Stakeholders

EPB assessors, certifiers, engineers, architects, energy experts, training providers

Rationale

Because each Region currently applies its own EPB methodology, training and accreditation systems for EPB assessors, certifiers and energy experts are entirely different. This fragmentation prevents economies of scale, increases administrative burden for training providers, and creates unnecessary barriers in the labour market. Professionals wishing to operate across Regions must often repeat large parts of their training or obtain multiple accreditations, even though the underlying expertise required is largely the same.

At a time when Belgium urgently needs more qualified experts to support the energy transition, maintaining three parallel training systems slows down capacity building and makes the profession less attractive.

Recommendation

Using the example of TOTEM and GRO, develop a single, harmonised training and accreditation framework for all EPB assessors, certifiers and related professionals across the three Regions. This unified system should be based on the common EPB methodology proposed elsewhere in this paper and would include shared curricula, common examinations, and a mutually recognised accreditation regime. Regional administrations could still tailor communication or guidance to local needs, but the core qualification would be national.

Impact

A harmonised training and accreditation system would significantly increase efficiency, enabling shared development of training materials, unified examinations and lower administrative costs for public authorities. It would also strengthen the national pool of expertise, making it easier for professionals to work across Regions and respond to growing market demand.

By simplifying pathways into the profession and ensuring consistent skill standards, Belgium would accelerate workforce development for the energy transition while creating clearer career opportunities and greater labour mobility. Ultimately, this reform would support a more robust and responsive professional ecosystem, benefiting administrations, the market and citizens alike.

12. Shared EPB Database

Stakeholders

Financial Institutions

Rationale

At present, EPB data are stored separately by each Region, preventing any national overview of the building stock. This limits the ability to monitor progress toward EPBD and Renovation Wave targets, and restricts access to reliable data for banks and researchers developing energy transition strategies.

Recommendation

Create a federated EPB data repository combining the regional databases while respecting GDPR and privacy constraints.

Such a platform would allow:

- Public authorities to track national renovation progress;
- Financial institutions to verify energy performance for sustainable loans;
- Researchers to analyse trends in building performance;
- Owners to gain access to valuable information on their buildings;
- Policymakers and analysts to better anticipate CO₂ emissions from the real estate sector;
- All stakeholders to better assess the resilience of buildings in light of expected climate change impacts.

This initiative would also strengthen Belgium's ability to report consistently to the European Commission under EPBD and Energy Efficiency Directive requirements.

Impact

A shared EPB database would give Belgium, for the first time, a coherent national view of its building stock. For banks, this means reliable, standardised, and easily verifiable data to support sustainable loans, EU Taxonomy assessments, and large-scale renovation financing. Public authorities would be able to track progress toward EPBD and Renovation Wave targets, design more effective incentives, and report consistently to the European Commission. By improving data quality, transparency and accessibility, this measure would strengthen national planning, accelerate green investment, and support evidence-based policymaking across all Regions.

13. Data interoperability and integration with building passports

Stakeholders

Financial Institutions, Data Managers

Rationale

Beyond harmonising calculation methods, the integration of EPB results and supporting data into **digital building passports, renovation roadmaps, and financial tools** is increasingly important. Today, fragmented data structures prevent automatic exchange of information between Regions or between EPB databases and other building registries.

Recommendation

Define a **national data interoperability framework** for EPB information, using open standards (e.g., XML, IFC, INSPIRE). This framework should allow secure data exchange between regional databases, digital product passport and building passports. Aligning metadata structures would strengthen **transparency**, facilitate **financial verification**, and support **EU reporting** obligations.

Impact

Improving data interoperability would make it far easier to link EPB information with building passports, renovation roadmaps, and financial tools.

For banks, this means faster and more reliable verification of building performance when granting sustainable loans or assessing EU Taxonomy alignment.

For public authorities, interoperable data would support better planning, clearer renovation strategies, and smoother reporting to the European Commission.

For citizens, it would provide easy, centralised access to all information related to a building in one place, without the need to manually transfer or recompile data during purchase or sale transactions.

Ultimately, this measure would deliver a more transparent, efficient, and coherent digital ecosystem, enabling citizens and professionals to access accurate information across the entire building lifecycle.

CONCLUSION

The harmonisation of the EPB methodology is a pragmatic and achievable step to support the implementation of the EPBD recast in Belgium. Stakeholders from the construction, real estate and financial sectors now unanimously call for a clear, unified and transparent framework that improves regulatory consistency and accelerates investment in energy-efficient buildings.

The federations and their members — together representing several thousand companies — are ready to dedicate the energy and expertise needed to make this harmonisation a reality. In the past, Buildwise successfully played a central role in aligning methodologies across Regions; the sector is once again ready to contribute to such a collective effort.

The BGBC, together with sectoral organisations and their members, stands ready to collaborate actively with the three Regional administrations and the Federal government to co-design a realistic roadmap, to mobilise expert knowledge, and to provide the coordinated support required for a successful transition toward a single national EPB framework.

Contact

Gilles Vanvolsem

Managing Director

gilles.vanvolsem@belgiangbc.be

+32 475 701 246

BGBC asbl/vzw
Pleinlaan 2
BE-1050 Brussels
belgianbc.be

Future
proof
real estate
together